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Abstract— Previous studies of intracortical brain-computer 

interfaces (BCIs) have often focused on or compared the use of 

spiking activity and local field potentials (LFPs) for decoding 

kinematic movement parameters.  Conversely, using these 

signals to detect the initial intention to use a neuroprosthetic 

device or not has remained a relatively understudied problem.  

In this study, we examined the relative performance of spiking 

activity and LFP signals in detecting discrete state changes in 

attention regarding a user’s desire to actively control a BCI 

device.  Preliminary offline results suggest that the beta and 

high gamma frequency bands of LFP activity demonstrated a 

capacity for discriminating idle/active BCI control states equal 

to or greater than firing rate activity on the same channel.  

Population classifier models using either signal modality 

demonstrated an indistinguishably high degree of accuracy in 

decoding rest periods from active BCI reach periods as well as 

other portions of active BCI task trials.  These results suggest 

that either signal modality may be used to reliably detect 

discrete state changes on a fine time scale for the purpose of 

gating neural prosthetic movements. 

I. INTRODUCTION 

A number of signals may be derived from intracortically 
implanted microelectrode arrays for use in a brain-computer 
interface (BCI).  These include manually sorted spike 
waveforms indicative of single-unit activity (SUA), simple 
threshold crossings analogous to multi-unit activity (MUA), 
and the spectral power within specific frequency bands 
derived from local field potentials (LFPs).  The relative 
information content of these signal modalities has been 
described previously in the context of both physical reaching 
movements [1] as well as for decoding the movements of a 
neural prosthetic device [2], [3]. 
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While the majority of similar BCI studies have focused 
on the use of these signals to decode volitional movement 
kinematics (i.e. movement direction, velocity, etc.), fewer 
studies have addressed the need to detect when a subject 
actually desires to control a prosthetic device in the first 
place.  As suggested from our previous work, neural activity 
recorded during rest between periods of physical reaching 
movements is often decoded by kinematic firing rate models 
as a non-zero velocity [4].  Indeed, decoding of this resting 
state activity by most common BCI algorithms would result 
in undesired and possibly dangerous prosthetic movements 
when a subject is resting or distracted.  Additionally, 
inclusion of periods of unintended BCI control could add 
deleterious noise to movement decoder calibration or other 
analyses.  

To address these needs to eliminate unwanted movements 
during periods of non-control or remove periods of 
inattention from analysis, a recent study from our lab 
demonstrated that an idle state detector based on spiking 
activity can robustly distinguish periods of rest and 
appropriately gate the output of a movement decoder [5].  
Similarly, an ECoG-based BCI study demonstrated that 
periods of active BCI control and rest could be accurately 
classified using epidural field potentials [6].  In the present 
study, we sought to extend both of these results by examining 
whether intracortical LFPs may also be used to decipher 
attention to prosthetic control, and how the utility of these 
signals compares to that of spiking activity.  As has been 
suggested before, LFP’s have been proposed to be a robust 
BCI signal modality that may be more resistant to 
degradation over time than spiking activity [2], [3].  
Supporting this notion, we present preliminary results that 
suggest LFP discriminative capacity is on par with that of 
spiking activity in a frequency specific manner, and 
population models using either modality are capable of 
detecting state changes with fine temporal resolution. 

II. METHODS 

A. Behavioral Task 

One male rhesus macaque was implanted with two 96-
channel intracortical microelectrode arrays (Blackrock 
Microsystems) in primary motor cortex (M1) of the right 
hemisphere.  The monkey performed a two-dimensional (2D) 
BCI reaching task using an anthropomorphic robotic arm 
(WAM Arm, Barrett Technology) while seated comfortably 
in a primate chair with both arms restrained.  The WAM arm 
was positioned to the left of the monkey and positioned to 
approximate a “surrogate” left arm contralateral to the 
implanted arrays.  The monkey controlled the end-point 
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velocity of the robotic arm by modulating recorded spiking 
activity.  To begin a trial, a target object attached to the end 
of a presentation robot (DENSO Robotics) is presented at one 
of five target locations equally spaced from the WAM arm’s 
starting position in a half-circle configuration (“Present” 
stage).  During target presentation, the WAM arm is 
automatically held at its starting position.  The task then 
proceeds to the “Reach” phase, where the monkey must 
move the robot arm (now under active BCI control) toward 
the target and cross an invisible proximity threshold.  After 
crossing this target radius threshold, the robot arm 
automatically completes the rest of the movement to grab the 
target object (“Approach” phase).  The interlocked WAM 
hand and target object with water tube are then driven 
automatically to the monkey’s mouth to deliver a liquid 
reward (“Drink” phase).  Finally, the WAM and DENSO are 
returned to their home positions before starting the next trial 
(“Intertrial” phase).  Movement of the WAM arm is only 
influenced by neural signals during the “Reach” phase. 

The trial structure above comprises “Active” or “task" 
trials.  We interleaved blocks of “Rest” (or “idle”) trials 
between blocks of “Active” trials to assess potential 
differences in neural activity between idle and active BCI 
task states.  During “Rest” trials, the target object is returned 
to its home position away from the monkey, and the WAM 
arm is locked in place in its home position.  Neither robot 
moves during these trials, and thus provides no motivation 
for the monkey to modulate neural activity in a task-related 
manner.  Blocks of 10 rest trials lasting approximately 1 
minute total were interleaved between every 50 task trials. 

B. Data Acquisition and Signal Conditioning 

All neural data were recorded using TDT (Tucker Davis 
Technologies) RZ2 signal acquisition systems.  BCI 
movement control signals were derived from spiking activity 
(either manually sorted spikes or simple RMS-based 
threshold crossings).  Spiking events were binned into 30 ms 
bins and used to estimate firing rates using a 15-sample FIR 
filter with a sample-to-sample exponential decay constant of 
0.95.  Firing rates were translated to the 2D end-point 
velocity of the WAM arm using an Optimal Linear Estimator 
(OLE) model as described in our previous experiments [7].  
These estimates of firing rates were also used in all offline 
analyses described in this report. 

In addition to the spiking activity used for online BCI 
control, LFP waveforms were saved for offline processing 
and analysis. Raw waveforms were filtered offline using an 
envelope detection scheme to estimate the spectral power in 
six frequency bands:  8-15 Hz, 15-24 Hz, 30-50 Hz, 70-90 
Hz, 90-110 Hz, and 130-150 Hz.  These correspond roughly 
to classically defined EEG/ECoG bands (‘alpha’, ‘beta’, 
‘low-gamma’, and two ‘high-gamma’ bands), and have been 
described in ECoG reports of idle-state classification [6].  
LFP band amplitude estimates were resampled into 30 ms 
bins to align with firing rate time-series and smoothed again 
with the same filter as for firing rates to provide an equal 
footing for comparison. 

C.  Training Data 

Data used for single-channel analyses and population 
model training were selected using a subset of trials with the 

monkey’s highest performance based on the assumption that 
the monkey would be most attentive and motivated during 
this period.  A sliding window of 100 task trials was used to 
calculate a running average performance over the course of a 
session.  The block of 100 task trials with the highest 
performance was included in discriminability calculations 
and classification models.  All rest trials within a session 
were included due to their smaller number and the 
assumption that attention during these blocks should not 
fluctuate within the course of a session. 

D.  Single-Channel Idle State Discriminability 

To compare the utility of individual firing rate and LFP 
features in classifying active/idle states for a BCI task, we 
employed the discriminability index, d’, from signal 
detection theory [8] using Eq. 1: 

 𝑑′ =  
𝜇𝑡𝑎𝑠𝑘−𝜇𝑟𝑒𝑠𝑡

√𝑝𝑡𝑎𝑠𝑘𝜎𝑡𝑎𝑠𝑘
2 +𝑝𝑟𝑒𝑠𝑡𝜎𝑟𝑒𝑠𝑡

2
 

 𝑝𝑡𝑎𝑠𝑘 + 𝑝𝑟𝑒𝑠𝑡 = 1 

where 𝜇𝑡𝑎𝑠𝑘/𝑟𝑒𝑠𝑡 is the mean firing rate or band amplitude 

during task and rest periods, 𝑝𝑡𝑎𝑠𝑘/𝑟𝑒𝑠𝑡 is the proportion of 

task and rest samples, and 𝜎𝑡𝑎𝑠𝑘/𝑟𝑒𝑠𝑡
2  is the variance in firing 

rate or band amplitude during those periods.  LFP band 
amplitudes were used to calculate and compare d’ metrics 
against corresponding firing rate metrics obtained from the 
same channel.  d’ values were calculated using trial-binned 
data where active neural samples were averaged over the 
reach portion of each trial within the 100 task trial best peak 
performance window, and rest samples were averaged over 
the entirety of each rest trial. 

E.  Population Level Classification 

To compare idle/active classification utility at the 
population level, we built classification models using either 
only firing rate activity or LFP band activity.  For LFP 
models, all frequency bands on each channel were included.    
Linear discriminant analysis (LDA) models were trained 
using “Reach” task samples from the 100-trial peak 
performance window and all “Rest” samples.  LDA models 
were fit and cross-validated using 10-fold cross-validation. 

As the raw output of the population LDA models tested 
in this study is continuous-valued, the numeric boundary 
between labeling samples as “idle” or “active” is an arbitrary 
decision dependent upon desired sensitivity and specificity 
in detecting those periods.  Consequently, a Receiver-
Operator Characteristic (ROC) analysis was used to test the 
classification performance of each model.  In this 
framework, a variable threshold is swept through the range 
of raw classifier outputs while plotting the corresponding 
true positive rate vs. false positive rate at each threshold.  
The resulting Area Under the Curve (AUC) metric (value of 
1 indicating perfect classification, 0.5 indicating chance 
performance) was used to compare performance between 
models as well as the utility of a given model in 
discriminating other periods. 

F.  Classification of Other Non-Reaching Task Periods 

The offline models above were trained exclusively on the  

“Reach” and “Rest” task periods.  We also sought to examine 
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how these models extend to discriminating other periods of 

the task from rest.  Toward this end, we tested the raw output 

of these models on other task periods using ROC analysis to 

identify similarities and differences between the rest/reach 

states and other task periods. 

III. RESULTS 

A.  Single Channel Discriminability 

Fig. 1A depicts the relationship of the d’ metric 
(measured in standard deviations, std) for firing rate activity 
on individual channels versus the LFP activity on the same 
channel in different frequency ranges (only the first high 
gamma band is shown for compactness as higher bands 
displayed similar patterns). As seen from this figure, firing 
rate activity showed a diverse range of task/rest related 
modulation both in magnitude (|d’| ranging from near 0 to > 3 
std) and sign (both increases and decreases in activity during 
task relative to rest).  Conversely, LFP activity within a given 
band tended to be more homogenous with a smaller spread in 
d’ values than for firing rate activity.  Additionally, the sign 
of modulation was observed to change across bands in a 
similar pattern to past descriptions of event-related 
depolarization (ERD) and synchronization (ERS) in both 
physical movements [9]–[11] and BCI experiments [6]. 

To assess the relative utility of individual LFP features vs. 
firing rate activity, we compared the intra-channel difference 
in the magnitude of d’ values for those features.  As seen 
from Fig. 1B, a large proportion of LFP features in several 
frequency bands (15-24 Hz, high gamma bands) held better 
idle state discriminatory power than their firing rate 
counterpart on the same channel (channels within the grey 
shaded regions of Fig. 1A).  Conversely, firing rate d’ metrics 
tended to be higher than their LFP counterparts in the alpha 

and low-gamma frequency bands (channels within white 
regions).  Overall, it appears there is useful information for 
detecting idle/active state changes within single channels in 
both firing rate and LFP activity.  This discriminability 
capacity is frequency dependent, with beta and high-gamma 
frequencies often exhibiting higher capacity than same-
channel firing rates. 

B. Population-level Classification 

When models were trained and tested offline on real-time 
data, performance of both firing rate and LFP models were 
highly and indistinguishably accurate.  Both models achieved 
an AUC for rest vs. reach samples of over 0.99 and were not 
significantly different from each other.  Any differences 
observed in single-channel discriminability in Figure 1 
appear to have been overcome by the power of averaging 
over neural features using population-level classification.  
Fig. 2A depicts a histogram of raw classifier scores produced 
by an example LFP model for rest, reach, and all task periods 
as well as the corresponding ROC plots (Fig. 2B).  As seen 
from the figure, the classifier produces good separation 
between reach and rest distributions with minimal overlap.  
Firing rate models produced similar separation between states 
with non-significant differences in performance. 

C.  Classification of Other Non-Reaching Task Periods 

Due to the success in classifying rest and active (reach) 
periods using either signal modality, we next sought to 
explore how the performance of these models extended to 
discriminating rest samples from other periods of the active 
task.  The histograms in Fig. 2A depict the separation in 
classifier score distributions for the previously mentioned 
reach and rest samples as well as all active task samples from 
the peak 100 trial window using an LFP-based model.  Fig. 

                 
Figure 1.  Comparison of firing rate (FR) and LFP idle/task discriminability, d’.  A: LFP vs. firing rate idle/task discriminability. Circles indicate the 

d’ metrics for an LFP vs. firing rate feature on the same channel. Grey shaded regions indicate channels for which the LFP magnitude of discriminability 

in a given band was greater than firing rate activity on the same channel, while white regions indicate the opposite relation.  B:  Difference in idle/task 

discriminability for firing rate – LFP.  Histograms derived from panel A show the number of channels with a given difference in magnitude of d’.  

Negative values indicate that the magnitude of the d’ for an LFP feature was larger than that calculated from firing rate activity on the same channel. 

 

A B 
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Figure 2.  Real-time discrimination of idle periods vs. all task periods.   

Data shown is from an example LFP model. A firing rate model from the 

same session (results now shown) demonstrated similar results. 

A: Histogram of real-time idle score distributions for rest vs. reach or all 

task samples.  B:  ROC analysis of rest samples vs. individual task periods.  

Colored ROC curves indicate classifier performance for a given task period 

vs. rest with AUC performance metrics shown in the legend.  C:  Real-time 

classifier score evolution during task and rest periods.  Initial white  

regions indicate the beginning stages of a trial (“Present and “Reach” 

during which volitional neural modulation is likely.  Cyan shaded regions 

indicate later task stages during which task modulation is not necessary, and 

correspondingly show a characteristic drop in idle score.  The last red 

region indicates the beginning of a rest period during which the idle score is 

consistently low. 

 

2B breaks down the performance of this model further by 
ROC analysis of each task period individually vs. rest 
samples. As seen from the figure, although the classifier was 
trained exclusively on rest and reach samples, the model 
extended well to discriminating a majority of active task 
samples. 

Upon closer examination of the time-series of the raw 
classifier score as shown in Fig. 2C, we noted distinct 
patterns of raw score modulation correlating with the intra-
task structure.  Consistent with this observation, ROC 
analysis of idle scores comparing reach and intertrial periods 
(both within the active task structure) demonstrated the 
model still held significant discriminatory capacity at this 
temporal resolution.  Although not as high as for 
discriminating rest and reach samples, the ROC curve and 
AUC for reach/intertrial samples were well above random 
chance (AUC = 0.92). 

IV. DISCUSSION 

The experiments presented in this preliminary study 
provide a novel comparison of commonly used intracortical 
signal modalities, namely firing rate activity and LFPs, for 
use in detecting rest or active intent to control a prosthetic 
device in the context of a BCI.   Our results suggest that LFPs 
provide idle/active state discriminability on par with, if not 
superior to, firing rate activity in a frequency specific manner 
with beta and high gamma frequencies demonstrating the 
most promising utility.  At a population level, both modalities 
demonstrated indistinguishably high performance in offline 
classification of reach and rest states.  In addition to the 
aforementioned potential utility of this classification to gate 
unwanted prosthetic movements, another application of this 
result could be to use similar classifiers to throw out entire 
task trials from further analysis or use in decoder calibration 
if a subject is distracted from the task.  The intra-task state 
comparisons also suggest that such a classifier scheme may 
hold utility not only in discriminating obviously different 
attentional states to the task, but could potentially be used to 
discriminate discrete states of BCI control within the task 
itself.  Consequently, an appropriate decoder from a 
predefined set (e.g. reaching, posture, grasping, etc.) could be 
selected based on the detected state. This state-space 
approach to BCI decoding has been suggested as a tool to 
expand the breadth of current BCI control schemes [12], and 
the results presented here provide promising support for such 
an approach. 
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